Recent Results from RENO & Future Project RENO-50

> Sunny (Seon-Hee) Seo Seoul National University Feb. 15, 2014

KIAS-NCTS Joint Workshop 2014 @High1

Neutrino Oscillation

Impact of θ_{13} Measurement

- \checkmark To complete 3 v mixing angle matrix (PMNS).
- ✓ To open a window for leptonic \overrightarrow{OP} phase measurement LBNO, LBNE, Hyper-K $(\theta_{13} != 0)$

 $\mathsf{P}(\nu_{\mu} \rightarrow \nu_{e}) - \mathsf{P}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \propto \text{sin}2\theta_{12}\text{sin}2\theta_{23}\text{sin}2\theta_{13}\text{cos}\theta_{13}\text{sin}\delta$

- ✓ To allow neutrino mass hierarchy measurement (← requires not too small θ_{13})
- ✓ To allow precise measurement of atm. neutrino oscillation parameters

Concept of θ_{13} Measurement

□ Find disappearance of $\overline{v_e}$ fluxes due to neutrino oscillation as a function of energy using multiple, identical detectors to reduce the systematic errors in 1% level.

Reactor v **Experiments**

Experiment (location)	Sin ² 2 $ heta_{13}$ Sensiti- vity	Thermal Power (GW)	Distance Near/Far	Depth Near/Far (mwe)	Target mass (ton)	Cost (US \$)	# of physicists
Double Chooz (France)	> 0.03	8.5	400/1050	120/300	10/10	?	> 160
RENO (Korea)	> 0.02	16.8	290/1380	120/450	16/16	~10M	40
Daya Bay (China)	> 0.01	17.4	360(500)/ 1985(1613)	260/860	40x2/80	?	> 230

Construction:

✓ **DC** is expected to complete construction in **2014**.

✓ **RENO** finished construction in **June 2011**.

✓ **Daya Bay** finished construction in **Sept. 2012**.

RENO was the 1st exp to take data using both near & far detectors !

θ₁₃ Measurements Status

Double Chooz

- $sin^{2}(2\theta_{13}) = 0.085 + 0.051 (2011) rate + shape 1.7 \sigma$
 - \rightarrow 0.109 +- 0.035 (2013) rate + shape 3.1 σ

RENO

- $sin^{2}(2\theta_{13}) = 0.113 + 0.023 (2012) rate$ 4.9 σ
 - \rightarrow 0.100 +- 0.016 (2013) rate 6.3 σ

Daya Bay

- $sin^{2}(2\theta_{13}) = 0.092 + 0.017$ (2012) rate 5.4 σ
 - \rightarrow 0.090 +- 0.009 (2013) rate + shape 10 σ

 $|\Delta m_{ee}^2| = 2.59^{+0.19}_{-0.20} \times 10^{-3} (eV^2)$

RENO's 1st Measurement of θ_{13} (I)

PRL 108, 19802 (2012)

PRL 108, 191802 (2012)

PHYSICAL REVIEW LETTERS

week ending 11 MAY 2012

S

Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment

J. K. Ahn,⁷ S. Chebotaryov,⁶ J. H. Choi,⁴ S. Choi,¹⁰ W. Choi,¹⁰ Y. Choi,¹² H. I. Jang,¹¹ J. S. Jang,² E. J. Jeon,⁸ I. S. Jeong,² K. K. Joo,² B. R. Kim,² B. C. Kim,² H. S. Kim,¹ J. Y. Kim,² S. B. Kim,¹⁰ S. H. Kim,⁷ S. Y. Kim,⁷ W. Kim,⁶ Y. D. Kim,⁸ J. Lee,¹⁰ J. K. Lee,⁷ I. T. Lim,² K. J. Ma,⁸ M. Y. Pac,⁴ I. G. Park,⁵ J. S. Park,¹⁰ K. S. Park,⁹ J. W. Shin,¹⁰ K. Siyeon,³ B. S. Yang,¹⁰ I. S. Yeo,² S. H. Yi,¹² and I. Yu¹²

(RENO Collaboration)

<u>citation</u> : 666 (Inspires), 373 (web of science)

as of 13th Feb., 2014

RENO's 1st Measurement of θ_{13} (II)

Our PRL value was included in 2012 Particle Data Book.

LEPTONS

Neutrino Mixing

$$\begin{array}{l} \sin^2(2\theta_{12}) = 0.857 \pm 0.024 \\ \Delta m^2_{21} = (7.50 \pm 0.20) \times 10^{-5} \ {\rm eV}^2 \\ \sin^2(2\theta_{23}) > \ 0.95 \ ^{[i]} \\ \Delta m^2_{32} = (2.32^{+0.12}_{-0.08}) \times 10^{-3} \ {\rm eV}^2 \ ^{[j]} \\ \sin^2(2\theta_{13}) = 0.098 \pm 0.013 \end{array}$$

(B) Three-neutrino mixing parameters

$\sin^2(2\theta_{13})$

At present time direct measurements of $\sin^2(2\,\theta_{13})$ are derived from the reactor $\overline{\nu}_e$ disappearance at distances corresponding to the Δm^2_{32} value, i.e. L $\sim~$ 1km. Alternatively, limits can also be obtained from the analysis of the solar neutrino data and accelerator-based $\nu_\mu \rightarrow~\nu_e$ experiments.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
0.098±0.013 OUR A	VER/	IGE			
$0.086 \pm 0.041 \pm 0.030$		¹ ABE	12	DCHZ	Chooz reactors
$0.113 \!\pm\! 0.013 \!\pm\! 0.019$		² AHN	12	RENO	Yonggwang reactors
$0.092 \!\pm\! 0.016 \!\pm\! 0.005$		³ AN	12	DAYA	Daya Bay, Ling Ao, Ling Ao-II
					reactors
• • • We do not use	the f	ollowing data for a	verage	es, fits, l	imits, etc. • • •
$0.85 \begin{array}{c} +0.04 \\ -0.03 \end{array}$	68	⁴ ABE	11	FIT	KamLAND + global solar
< 0.23	95	⁵ ABE	11	FIT	Global solar
0.05 - 0.21	68	⁶ ABE	11 A	T2K	Normal mass hierarchy
0.06 - 0.25	68	⁷ ABE	11 A	T2K	Inverted mass hierarchy
0.01 - 0.09	68	⁸ ADAMSON	11D	MINS	Normal mass hierarchy
0.03 - 0.15	68	⁹ ADAMSON	11D	MINS	Inverted mass hierarchy
0.08 ± 0.03	68	¹⁰ FOGLI	11	FIT	Global neutrino data

RENO Collaboration

12 institutions and 40 physicists

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- Gyeongsang National University
- Kyungpook National University
- Pusan National University
- Sejong University
- Seokyeong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors since Aug. 2011

서울대 김수봉 교수가 이끄는 RENO 실험팀. 30여년간 관측에 실패한 마지막 중성미자 변환상수를 밝히기 위해 프랑스 중국과 치열한 경주를 벌이고 있다

Experimental Site

YongGwang: South west of South Korea ~ 300 km from Seoul

 "YongGwang" reactor site
→ "Hanbit" reactor site
(new name)

RENO Experimental Setup

RENO Detector

- 354 ID + 67 OD 10" PMTs
- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer: 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

RENO Data Taking Status

- Data taking began on Aug. 1, 2011 with both near and far detectors. (DAQ efficiency : ~95%)
- A (220 days) : First θ₁₃ result [11 Aug, 2011~26 Mar, 2012] PRL 108, 191802 (2012)
- B (403 days) : Improved θ₁₃ result [11 Aug, 2011~13 Oct, 2012] NuTel 2013, TAUP 2013, WIN 2013
- C (~795 days) : Shape+rate analysis (in progress)
 [11 Aug, 2011~31 Dec, 2013]
- Absolute reactor neutrino flux measurement in progress [reactor anomaly & sterile neutrinos]

IBD Event Signature

- Prompt signal (e⁺) : 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)
- Delayed signal (n) : 8 MeV γ's from neutron's capture by Gd

~28 μs (0.1% Gd) in LS♪

Signal: IBD pair (= a pair of prompt & delayed signals)

Backgrounds

- Accidental background caused by radioactivity; random coincidence between prompt and delayed signals (uncorrelated)
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)
- ⁹Li/⁸He β -n followers produced by cosmic muon spallation on ¹²C

Detector Stability of Energy Scale

IBD candidate's delayed signals (capture on Gd)

Spectra & Capture Time of Delayed Signals

Recent Results (Sept. 2013)

(prompt energy < 10 MeV)

preliminary

Rate +- Sys. err +- Stat. err

	Near	Far	
# of IBD events	279,787	30,211	
Total BKG rate (/day)	21.31 +- 1.79 +- 0.26	4.80 +- 0.45 +- 0.12	
Total IBD rate after BKG Subtraction (/day)	737 +- 2.31	70.22 +- 0.64	
Accidental background (/day)	3.61 +- 0.05 +- 0.10	0.60 +- 0.03 +- 0.04	
Fast neutron background (day)	3.59 +- 0.94 +- 0.10	0.65 +- 0.09 +- 0.04	
Li/He background (/day)	13.97 +- 1.52 +- 0.22	3.55 +- 0.44 +- 0.11	
DAQ Live-time (days)	369.034	402.693	
Detector efficiency (%)	61.99 +- 1.40	71.37 +- 1.19	

- Solid line is predicted rate from the neutrino flux calculation.
- Observed points have very good agreement with prediction.
- It's the accurate flux measurement.

Observed vs. Expected IBD Rates

- Observed and expected IBD rates match well within oscillation hypothesis.
- Background subtraction is correctly done.

Goal for θ_{13}

RENO

5 years of data : 7 %
stat. error : ±0.010 → ±0.005
sys. error : ±0.012 → ±0.005

Daya Bay

4 years of data : 4 %

```
|\Delta m^2_{ee}| final precision <0.1x10<sup>-3</sup>
```


Expected (Upcoming) Results from RENO

∆m²₃₁ directly from reactor neutrinos :
← spectral disappearance of reactor antineutrinos

Precise measurement of reactor antineutrino flux & spectra :
→ study reactor anomaly or sterile neutrinos

 Observation of reactor neutrinos based on neutron capture by Hydrogen

sin²(2θ₁₃) to 7% accuracy within 3 years :
→ determination of CP phase with accelerator results

Overview of RENO-50

 RENO-50 : An underground detector consisting of 18 kton ultralow-radioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit(Yonggwang) nuclear power plant

• **Goals** : - High-precision measurement of θ_{12} and Δm_{21}^2

- Determination of neutrino mass hierarchy
- Study neutrinos from reactors, (the Sun), the Earth,

Supernova, and any possible stellar objects

Budget : \$ 100M for 6 year construction
(Civil engineering: \$ 15M, Detector: \$ 85M)

 Schedule : 2014 ~ 2019 : Facility and detector construction 2019 ~ : Operation and experiment

Conceptual Design of RENO-50

Overview of JUNO

- Received funding for R&D & conceptual design in China.
- Geotechnical survey will be done by the end of summer.
- Detailed civil design underway.
- R&D on
 - prototyping detector
 - LAB-based liquid scintillator
 - photo-detectors
 - readout electronics
- Detector design underway.
- Form collaboration by the end of 2013.
- Begin data taking in 2020.

Luk's talk @Recontre du Vietnam 2013

◆ RENO can be used as near detector for RENO-50.
→ Reduces systematic error of nu flux.

While JUNO can not use Daya Bay detector as near detector. \rightarrow To reduce neutrino interference effect from other reactors.

Scientific Potential of JUNO/RENO-50

- Resolve the mass hierarchy
 - ~4 standard-deviation discrimination in 6 years
- Precision determination of neutrino-mixing parameters

	Current fractional precision	JUNO/ RENO-50
$sin^22\theta_{12}$	5%	0.7%
s in ² 20 ₂₃	5%	NA
$sin^22\theta_{13}$	10%	~15%
Δm^2_{21}	3%	0.6%
Δm^2_{31}	5%	0.6%

- Search for supernova neutrinos
 - ~5000 events for supernovae occur at 8 kpc
- Study geo-neutrinos
 - ~1000 events in a 5-year run

Luk's talk @Recontre du Vietnam 2013